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In this paper, modal and counterfactual logical connectives are defined in an extended
framework of branching space-time (Belnap, N. D. (1992). Branching space-time.
Synthese 92, 385–434). It is shown that a variety of definitions of the counterfactual
can be given. The validity of certain modal statements occurring in quantum mechanics
depends on the choice of definition. These considerations can be applied to an analysis
of Stapp’s premises LOC1 and LOC2 from his purported proof of non-locality (Stapp,
H. P. (1997). Nonlocal character of quantum theory. American Journal of Physics 65,
300–304). It is shown that while the validity of LOC1 depends on the choice of the
definition of the counterfactual, LOC2 is absolutely invalid.
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counterfactuals.

1. INTRODUCTION

Derivations of Bell-type or GHZ-type theorems have to appeal to modal
notions. This appeal to modality is often not made explicit. In order to assess
the implications of the mentioned theorems, their inherent modality should be
acknowledged both syntactically, through the use of modal symbolism, as well
as semantically, through the use of appropriate models. Recently, Henry Stapp
has given a proof that uses modal symbolism to argue that quantum mechanics
of itself is nonlocal (Stapp, 1997). While that proof is based on modal syntax,
it is not based on any modal semantics. This is problematic, since the details
of the workings of modal operators depend to a large extent on the semantics
that one has chosen to use. Especially in the case of the counterfactual conditional
“if . . . were the case, . . . would be the case” (also used by Stapp), a clear account of
the semantics is vital for correct formal reasoning. In this paper, I give a rigorous
formal semantics for the modal operators “possibly” and “necessarily” and for
the counterfactual conditional. The semantics is offered as part of a critique of
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Stapp’s purported proof, but also in the hope that it should be suitable for analyzing
quantum correlations in general.

The paper is organized as follows: In Section 2, I will briefly introduce the
formal branching models on which the formal semantics is based. In Section 3,
I will use these models to give a semantics for the modal operators and the
counterfactual conditional. Finally, in Section 4, I will analyze some aspects of
Stapp’s proof using the semantics.

2. MODELS

The models I will use are derived from Belnap’s Branching space-time (BST)
(Belnap, 1992), recently augmented to the framework of Stochastic outcomes in
branching space-time (SOBST) (Placek, 2000; Müller and Placek, 2001). In the
SOBST models that I will employ, histories (also called chronicles) are Minkowski
space-times. As the models exhibit branching, the future light cone above any point
may contain alternative courses of events. These alternative courses of events are
to be the basis for modal talk.

Both BST and SOBST are described in detail elsewhere (Belnap, 1992;
Placek, 2000). Here, I will only give a brief outline of those aspects of the model
framework that will be used later on.

2.1. Our World as a Partial Ordering

Our World is pictured as a nonempty partial ordering 〈W,≤〉, where the ele-
ments of W are understood to be space-time points viewed as concrete particulars.
For two elements x, y ∈ W , x ≤ y can be read “x is in the causal past of y,” or “y
is in the future of possibilities of x.” x < y is defined, as usual, as x ≤ y ∧ x �= y.
The ordering is taken to be dense and without maximal elements. (Alternatively,
a somewhat weaker condition may be imposed; cf. (Placek, 2000, p. 142).)

A history σ in W is a maximal upward directed subset of W , where “upward
directed” means that for all e1, e2 ∈ σ , there is e ∈ σ s.t. e1 ≤ e and e2 ≤ e. Two
points x, y are compatible iff there is a history to which they both belong. If two
points x, y are incompatible, then they will belong to different histories. By the
prior choice principle, for incompatible x, y there is a point e s.t. e < x and e < y

at which histories containing x and y, resp., split from each other. This principle
implies historical connection, i.e., all histories intersect (“in the distant past”). For
histories σ and η, their set of splitting points Cσ,η is defined to be the set of all
maximal elements in their intersection σ ∩ η.

The branching framework does not decide the question of the space-time
metric. To keep things simple, in what follows I require that histories are
Minkowski space-times.
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2.2. Comparative Similarity of Histories

A key ingredient in the definition of the counterfactual conditional, to be
given below, is the notion of comparative similarity of histories (or “worlds”). For
example, in order to assess whether a counterfactual like “If kangaroos had no
tails, they would topple over” is to be counted true or false, the recipe is to find,
among the (possible) worlds in which kangaroos have no tails, the one that is most
similar to the actual world. Then, the mentioned counterfactual is true iff in that
world, kangaroos do topple over, false otherwise. The counterfactual is counted
vacuously true if there simply is no situation in which the antecedent holds. (This
verbal description is to be taken with a grain of salt; for the technical details, cf.
(Lewis, 1973).)

On the basis of a branching structure 〈W,≤〉, it is possible to introduce
similarity orderings that have some of the technical properties needed for the
definition of the counterfactual. For histories σ, η, γ , the ordering η �σ γ is
read “η is more similar to σ than γ .” The intuition behind a branching notion of
similarity is that the later two histories split, the more similar they are. On the
basis of a branching structure, three similarity orderings that spell out this intuitive
motivation can be defined:2

Definition 2.1. (Strong Version of Strict Comparative Similarity). η is more
similar to σ than γ in the strong sense (η �S

σ γ ) iff the set of splitting points
between σ and γ , Cσ,γ , causally precedes the set of splitting points between σ

and η, Cσ,η, i.e., iff ∀x ∈ Cσ,γ ∀y ∈ Cσ,η x < y.

Definition 2.2. (Mild Version of Strict Comparative Similarity). η is more
similar to σ than γ in the mild sense (η �M

σ γ ) iff ∀x ∈Cσ,γ ∃ y ∈Cσ,η

x < y.

Definition 2.3. (Weak Version of Strict Comparative Similarity). η is more sim-
ilar to σ than γ in the weak sense (η �W

σ γ ) iff ∀x ∈Cσ,γ ∃ y ∈Cσ,η x ≤ y and for
some x ′ ∈Cσ,γ , y ′ ∈Cσ,η x ′ < y ′.

These definitions yield three partial orderings �, “strictly more similar than.” The
definition of the counterfactual, to be given below, is based on an ordering �, “at
least as similar as,” which is defined as

η �σ γ iff not γ �σ η. (1)

2 For a detailed discussion of these definitions, including proofs of the formal properties, cf. (Placek,
2000, p. 153) and Tomasz Placek’s contribution to the IQSA V conference (this volume). Thanks to
T.P. for allowing me to reproduce the definitions here.
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In Lewis’ original formulation, the relation � is required to be a weak ordering
(preordering), meaning that it satisfies the following two conditions:

1. Connectedness: For all σ, η, γ , we have η �σ γ or γ �σ η (and possibly
both).

2. Transitivity: For all σ, η, γ, δ, if η �σ γ and γ �σ δ, then η �σ δ.

Our orderings η �S
σ γ , η �M

σ γ and η �W
σ γ are connected, but not transitive

(since the relation of being space-like separated is not transitive). Still, the
given similarity orderings allow for the definition of a counterfactual connec-
tive that captures at least most of the important counterfactual inferences.3 The
three orderings are formally equally valuable, as they all have the same formal
properties. However, the definitions, and thus the orderings, are obviously not
equivalent.

A transitive similarity preordering could be defined, e.g., on the basis of a
real-valued measure of distance between histories. We have not been able to come
up with a good intuitive motivation for such a distance measure, but a first try
might be to use the distance of splitting points from a given point of evaluation as
a distance measure: Set the distance between σ and η, as viewed from Y , to be

D(σ, Y, η) =
∑

Z∈Cσ,η

|Y − Z|, (2)

where | · | is the Euclidean norm on R
4.4 Using this distance measure, we define

η �σ,Y γ iff D(σ, Y, η) ≥ D(σ, Y, γ ). (3)

3. SEMANTICS

Based on the branching models, I now define modal operators and the coun-
terfactual connective. Modal assertions are to be evaluated from the perspective
of a certain space-time point Y and a certain history σ from Our World W .

3.1. Possibility and Necessity

There are two modal operators that are commonly employed: a strong
operator, read “necessarily” (�), and a weak one, read “possibly” (�). Since the
two modalities are inter-definable, I will only treat the weak modality and define
“necessarily” to mean “not possibly not.”

One has to distinguish a number of different concepts of modality in order to
select the right one to use in the description of quantum correlation experiments.

3 Cf. (Lewis, 1981) for a definition of the counterfactual that is based directly on a partial ordering �.
4 Note that D will thus be frame-dependent. This is awkward, but the (Lorentz-invariant) Minkowskian

space-time distance cannot be used in the definition, as it is not necessarily positive, leading to
counterintuitive results.
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A statement φ(X) (stating something about a space-time point X) can be called
“possible” at a space-time point Y in a history σ in at least the following five senses:

1. �1, logical possibility, meaning the absence of contradiction. This is the
most liberal notion of possibility, counting everything as possible that is
not contradictory. For our purposes, this is too wide.

2. �2, physical possibility, meaning absence of contradiction with established
physical laws. This concept is also too broad for our purposes. Further-
more, it relies on a notion of physical laws that is not uncontroversial.

3. �3, possibility in the given model of Our World W . This is the first useful
concept. It states that φ(X) is possible in W (in any history and at any
point – this information is discarded) iff there is a history η such that φ(X)
holds in η.

4. �4, possibility in the given universe based on accessibility: φ(X) is possible
in σ at Y iff there is a history η that is accessible from σ (i.e., σ ∩ η �= ∅)
in which φ(X) is true at Y . This concept will usually coincide with �3,
since normally we assume historical connection. If historical connection
does not hold, however, �4 is a different concept. Most importantly, �4

is the concept of the outer modalities based on the counterfactual to be
defined below.

5. �5, possibility based on reality. This is the most important concept. Ac-
cording to �5, φ(X) is possible in a history σ and at a space-time point Y

iff either (1) X is in the past or present of Y (i.e., outside the future light
cone above Y ), and in history σ , φ(X) is or was in fact true, or (2) X is in
the causal future of Y , and in some branch of the universe above Y (i.e.,
in some future that is accessible from Y in history σ ), φ(X) is true. This
concept is called “possibility based on reality” because the real course of
events determines what is possible: either something has become actual
and is thus possible as well as necessary, or it is still open to occur, given
what has occurred so far. (For the phrase “possibility based on reality,”
cf. also (Xu, 1997).) According to this notion, possibility and necessity
coincide for the past, but differ for the future. This is exactly as it should
be: the past is fixed, the future is open.

Since the concept �5 is the important one in our context, I use the simple “�”
for it. To give the formal definition explicitly: �ψ(X) is true at history σ and at
point Y iff there is a history η in W such that σ and η agree for all points outside
the future light cone above Y , and φ(X) holds at Y in η.

Example: At the source of a quantum correlation experiment (point Y =
location of source), all outcomes Lα+ (left: setting α, outcome +), Lβ− (setting
β, outcome −), etc. are possible in this sense. After the setting α has been selected
on the left (point Y above the selection event in an α-branch), Lβ+ is no longer
possible.
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3.2. Counterfactuals

In a situation where something is no longer possible, it may have been possi-
ble, and one can sometimes sensibly ask what would be the case, had something
else been the case. For simplicity’s sake, I deal with counterfactuals that have this
asymmetric temporal structure only; they are the ones that figure importantly in
reasoning about hidden variables and non-locality.

The basic form of the “would” counterfactual5 is thus, “at Y in history σ ,
if φ(X) had been the case, ψ(X′) would be the case,” symbolized as “φ(X) �→
ψ(X′).” In line with Lewis’ definition (Lewis, 1973), I will use two auxiliary
notions: the set Wσ of histories accessible from σ , defined as the set of histories
that share some past region with σ ,6 and the weak ordering �σ from the family �
defined above in Section 2.2, where η �σ γ means “history γ is no more similar
to σ than η.” Given these notions, the formal definition of the counterfactual reads
as follows: The counterfactual statement “if φ(X) had been the case, ψ(X′) would
be the case” is true in history σ at space-time point Y iff either (1) there is no
history in Wσ in which φ(X) holds, or (2) there is a history η in Wσ in which φ(X)
holds, and for all γ in Wσ , the following holds: If γ �σ η,7 then in γ , the plain
(material) conditional “if φ(x), then ψ(X′)” holds: in γ , either φ(X) is false or
ψ(X′) is true (or both).

3.3. Outer Modalities

From a counterfactual, one can retrieve a notion of conceivability, the so-
called outer modalities (cf. Lewis, 1973, p. 22]). Relative to �→, it is possible
that φ(X) iff φ(X) is true in some history in Wσ . This is a far wider notion of
possibility than the notion employed for possibility based on reality—indeed,
it is the notion behind �4, as already advertised above. This makes sense: the
counterfactual by its very name is not tied to reality and thus needs to take into
account more than what is still possible.

4. STAPP’S PURPORTED PROOF OF NON-LOCALITY

Henry Stapp has recently given a formal proof of non-locality from quantum
mechanics alone, making heavy use of modal symbolism (Stapp, 1997). The
overall structure of the proof is the following: Stapp starts with three premises

5 The “might” counterfactual is definable from this in the usual fashion. As it is not important in
quantum mechanical reasoning, I do not define it explicitly; cf. (Lewis, 1973).

6 Assuming historical connection, this set will be the set of all histories in W ; cf. the discussion about
�4 above.

7 If the transitive similarity ordering based on the distance function D is used, ‘�σ ’ needs to be replaced
by ‘�σ,Y ’.
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LOC1–LOC3 that, as he claims, express the concept of locality. Stapp then goes
on to show that a contradiction can be derived from these three premises and
some innocuous assumptions. If this were correct, it would follow that quantum
mechanics has been shown to be nonlocal, without any recourse to reasoning
about hidden variables, elements of reality or the like. (With Stapp, I agree that
his innocuous assumptions are indeed innocuous.)

Here is a relevant portion of the proof (lines 15 and 16 are my addition to
make explicit the formal contradiction that Stapp claims to have derived):

Lβ ∧ Rβ ∧ Lβ + 3 (Rα �→ Lβ ∧ Rα ∧ Lβ+) LOC1 S1

Lβ ∧ Rβ ∧ Rβ + 3 Lβ ∧ Rβ ∧ Lβ + QM S2

Lβ ∧ Rα ∧ Lβ + 3 Lβ ∧ Rα ∧ Rα − QM S3

Lβ ∧ Rβ ∧ Rβ + 3 (Rα �→ Lβ ∧ Rα ∧ Rα−) LOGIC, S1, S2, S3 S4

Lβ 3 (Rβ ∧ Rβ + 3 (Rα �→ Rα−)) LOGIC?, fromS4 S5

Lα 3 (Rβ ∧ Rβ + 3 (Rα �→ Rα−)) LOC2, S5 S6

. . .

¬�(Lα ∧ Rβ) LOGIC, S11, S14 15

�(Lα ∧ Rβ) FREECHOICE 16

The proof is based on the properties of the Hardy state (Hardy, 1992). “Lβ”
is to be read as “in the left wing of the experiment, setting β has been chosen,”
“Rα+” as “in the right wing, α was chosen, and the outcome was +,” etc. Besides
the counterfactual conditional “ �→” and the possibility operator “�,” the proof
employs the usual symbols “∧” for “and,” “¬” for “not,” and the strict implication
“ 3 ,” where “φ 3 ψ” is defined as “necessarily, if φ then ψ .”

In its published form (Stapp, 1997), the proof contains formal errors resulting
from an incautious mixing of strict and material conditionals.8 These problems
can however be circumvented.9 For an assessment of the proof, it is conceptually
most important to analyze the premises LOC1 and LOC2 that Stapp refers to in
lines S1 and S6.

LOC1. Stapp’s premise LOC1 “asserts that if under the condition that the
choices were L2 [setting on the left] and R2 [on the right] the outcome in L at
some earlier time were L2+, then if the (later) choice in R were to be R1, instead

8 Cf., e.g., the inference from line S4 to S5—A very detailed and careful analysis of Stapp’s proof is
given in (Shimony and Stein, 2003), but their discussion is not based on an explicitly given formal
semantics.

9 At the Los Alamos preprint archive (http://xxx.lanl.gov) there is an ongoing discussion about
the proof, with some new versions by Stapp, e.g., quant-ph/0010047.
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of R2, but the free choice in L were to remain unchanged, then the outcome L2+
in L would likewise remain unchanged” (Stapp, 1997, p. 301). Counterfactual
statements of this kind are true if the counterfactual is based on the weak notion
of comparative similarity, but false otherwise: As there is a choice point common
to both the actual and the counterfactual scenario, only definition 2.3. applies,
being the only one of the three definitions that allows for ties (via ≤ instead of
< as in the other definitions). Thus, the validity of Stapp’s first premise depends
on a fine detail of the modal semantics.10 As none of the three given notions
of comparative similarity can be selected on purely formal grounds, a case for
or against Stapp’s premise LOC1 will have to based on some intuitive, at least
non-formal, considerations. No case for or against LOC1 will be made in this
paper.

LOC2. In the form given in the published proof, the rule LOC2 is inappro-
priate, again due to a mixing up of strict and material conditionals. It can however
be repaired by changing the second conditional in lines S5 and S6 to a material
one. Call the amended lines S5’ and S6,’ resp. The amended rule that allows one
to infer S6’ from S5’ will be called LOC2.’

LOC2’ is incorrect, as can be shown by a simple counter-model. Taking the
branching model 〈W,≤〉 to be a model of the Hardy experiment (Hardy, 1992)
that Stapp himself uses in his argument, we have a case where the antecedent of the
purported rule of inference, statement S5,’ is true, while the consequent, statement
S6,’ is false. This one counterexample shows that, contrary to the intuitive moti-
vation given by Stapp in his paper, LOC2’ cannot be a valid rule of inference. The
purported proof thus does not show that quantum mechanics of itself is non-local.

Even after Stapp’s proof, all known valid arguments for the non-locality of
quantum mechanics are based on assumptions about hidden variables of some
sort. These arguments thus leave open the possibility that the assumptions made
about hidden variables are fallacious, in which case quantum mechanics would
not have been shown to be non-local.
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